Journal publications:
[1]
            
            W. Qiu, S. Rudkin, and P. Dłotko, 'Refining
              understanding of corporate failure through a topological data analysis mapping of Altman`s Z-score model`,
              Expert Systems with Applications, vol. 156, p. 113475, Oct. 2020, doi: 10.1016/j.eswa.2020.113475.
            
          [2]
            
            R. Khalil, A. Farhat, and P. Dłotko,
              ‘Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster
              Analysis’, Frontiers in Computational Neuroscience, vol. 15, 2021, doi: https://doi.org/10.3389/fncom.2021.667696.
          [3]
            
            A. D. Smith, P. Dłotko, and V. M. Zavala,
              ‘Topological data analysis: Concepts, computation, and applications in chemical engineering’, Computers
                & Chemical Engineering, vol. 146, p. 107202, Mar. 2021, doi: 10.1016/j.compchemeng.2020.107202.
          [4]
            
            B. Zieliński, M. Lipiński, M. Juda, M.
              Zeppelzauer, and P. Dłotko, ‘Persistence codebooks for topological data analysis’, Artif Intell
                Rev, vol. 54, no. 3, pp. 1969–2009, Mar. 2021, doi: 10.1007/s10462-020-09897-4.
          [5]
            
            A. Mahdi et al., ‘OxCOVID19 Database, a
              multimodal data repository for better understanding the global impact of COVID-19’, Scientific
                Reports, vol. 11, no. 1, Art. no. 1, Apr. 2021, doi: 10.1038/s41598-021-88481-4.
          [6]
            
            F. Llovera Trujillo, J. Signerska-Rynkowska,
              and P. Bartłomiejczyk, ‘Periodic and chaotic dynamics in a map-based neuron model’, Mathematical
                Methods in the Applied Sciences, vol. 46, no. 11, pp. 11906–11931, 2023, doi: 10.1002/mma.9118.
          [7]
            
            P. Dłotko and D. Gurnari, ‘Euler
              characteristic curves and profiles: a stable shape invariant for big data problems’, GigaScience,
              vol. 12, p. giad094, Jan. 2023, doi: 10.1093/gigascience/giad094.
          [8]
            
            R. Beckmann, R. Topolnicki, D. Marx, ‘Deciphering the Impact of Helium Tagging on Flexible Molecules: Probing Microsolvation Effects of Protonated Acetylene by Quantum Configurational Entropy’,  The Journal of Physical Chemistry A  Mar 2023, doi: https://doi.org/10.1021/acs.jpca.2c08967.
          [9]
            
            P. Pilarczyk, J. Signerska-Rynkowska, and G.
              Graff, ‘Topological-numerical analysis of a two-dimensional discrete neuron model’, Chaos: An
                Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 4, p. 043110, Apr. 2023, doi: 10.1063/5.0129859.
          [10]
            
            P. Dłotko and N. Hellmer, ‘Bottleneck Profiles
              and Discrete Prokhorov Metrics for Persistence Diagrams’, Discrete Comput Geom, May 2023, doi: 10.1007/s00454-023-00498-w.
          [11]
            
            R. Idczak, W. Nowak, B. Rusin, R. Topolnicki, T. Ossowski, M. Babij, A. Pikul, ‘Enhanced Superconducting Critical Parameters in a New High-Entropy Alloy Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08’, MaterialsAug. 2023, doi: https://doi.org/10.3390/ma16175814.
          [12]
            
            P. Sobota, R. Topolnicki, T. Ossowski, T. Pikula, D. Gnida, R. Idczak, A. Pikul, ‘Superconductivity in high-entropy alloy system containing Th’,  cientific Reports Sept. 2023, doi: https://doi.org/10.1038/s41598-023-43085-y.
          [13]
            
            P. Bartłomiejczyk, F. L. Trujillo, and J.
              Signerska-Rynkowska, ‘Spike Patterns and Chaos in a Map–Based Neuron Model’, International Journal of
                Applied Mathematics and Computer Science, vol. 33, no. 3, pp. 395–408, Sep. 2023.
          [14]
            
            D. Wouken, D. Sadowski, J. Leśkiewicz, M.
              Lipiński, and T. Kapela, ‘Rigorous computation in dynamics based on topological methods for multivector
              fields’, J Appl. and Comput. Topology, Oct. 2023, doi: https://doi.org/10.1007/s41468-023-00149-2.
          [15]
            
            P. Dłotko, N. Hellmer, Ł. Stettner, and R.
              Topolnicki, ‘Topology-driven goodness-of-fit tests in arbitrary dimensions’, Stat Comput, vol. 34,
              no. 1, p. 34, Nov. 2023, doi: 10.1007/s11222-023-10333-0.
          [16]
          
          P. Dłotko, D. Gurnari, and R. Sazdanovic,
            ‘Mapper-type algorithms for complex data and relations’, Journal of Computational and Graphical
              Statistics June 2024. doi: 10.1080/10618600.2024.2343321.
        [17]
            
             W. Nowak, B. Rusin, M. Babij, R. Topolnicki, T. Ossowski, A. Pikul, R. Idczak, ‘Superconductivity in a New High-Entropy Alloy (NbTi)0.67(MoHfV)0.33’,   Metallurgical and Materials Transactions A  Jul. 2024, doi: https://doi.org/10.1007/s11661-024-07488-4.
          [18]
            
            P. Sobota, B. Rusin, D. Gnida, R. Topolnicki, T. Ossowski, W. Nowak, A. Pikul, R. Idczak, ‘New type of Ti-rich HEA superconductors with high upper critical field’,  Acta Materialia Feb. 2025, doi: https://doi.org/10.1016/j.actamat.2024.120666.
          [19]
            
            J. Navrátil, R. Topolnicki, M. Otyepka, P. Błoński, ‘Interpretable machine learning for atomic scale magnetic anisotropy in quantum materials’,   npj Computational Materials  May 2025, doi: https://doi.org/10.1038/s41524-025-01637-y.
          [20]
            
            R. Idczak, W. Nowak, M. Babij, D. Gnida, R. Konieczny, M. K. Krawczyk, D. Podsiadła, T. Ossowski, R. Topolnicki, A. Pikul, ‘Violation of Matthias rule: Elemental composition as the key determinant of critical temperature in bcc high-entropy superconductors’,    Physical Review B Jul 2025, doi: https://doi.org/10.1103/fnz7-bzmw.
          Conference papers:
[1]
            
            C. Loughrey, N. Orr, A. Jurek-Loughrey, and P.
              Dlotko, ‘Hotspot identification for Mapper graphs’, presented at the Topological Data Analysis and Beyond
              Workshop at the 34th Conference on Neural Information Processing Systems, 2020. doi: https://doi.org/10.48550/arXiv.2012.01868.
          Preprints:
[1]
            
            S. Rudkin, W. Qiu, and P. Dlotko,
              ‘Uncertainty, volatility and the persistence norms of financial time series’. arXiv, Sep. 30, 2021. doi:
              10.48550/arXiv.2110.00098.
            
          [2]
            
            P. Dłotko and D. Gurnari, ‘Euler
              Characteristic Curves and Profiles: a stable shape invariant for big data problems’. arXiv, Dec. 03, 2022.
              doi: 10.48550/arXiv.2212.01666.
          [3]
            
            P. Dłotko, N. Hellmer, Ł. Stettner, and R.
              Topolnicki, ‘Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions’. arXiv, Oct. 25, 2022. doi: 10.48550/arXiv.2210.14965.
          [4]
            
            P. Dlotko, W. Qiu, and S. Rudkin, ‘Topological
              Data Analysis Ball Mapper for Finance’. arXiv, Jun. 07, 2022. doi: 10.48550/arXiv.2206.03622.
          [5]
            
            B. Naskręcki and M. Verzobio, ‘Common
              valuations of division polynomials’. arXiv, Nov. 22, 2022. doi: 10.48550/arXiv.2203.02015.
          [6]
            
            S. Barańczuk, B. Naskręcki, and M. Verzobio,
              ‘Divisibility sequences related to abelian varieties isogenous to a power of an elliptic curve’. arXiv,
              Sep. 18, 2023. doi: 10.48550/arXiv.2309.09699.
            
          [7]
            
            J. Desjardins and B. Naskręcki, ‘Geometry of
              the del Pezzo surface y^2=x^3+Am^6+Bn^6’. arXiv, May 18, 2023. doi: 10.48550/arXiv.1911.02684.
          [9]
            
            P. Dłotko, M. Lipiński, and J.
              Signerska-Rynkowska, ‘Testing topological conjugacy of time series from finite sample’. arXiv, Jan. 17,
              2023. doi: 10.48550/arXiv.2301.06753.
          [10]
            
            P. Dłotko, J. F. Senge, and A. Stefanou,
              ‘Combinatorial Topological Models for Phylogenetic Networks and the Mergegram Invariant’. arXiv, Jul. 27,
              2023. doi: 10.48550/arXiv.2305.04860.
          [11]
            
            B. Naskręcki, Z. Dauter, and M. Jaskolski,
              ‘Growth functions of periodic space tessellations’. submitted to Acta Cryst. A, 2023.
          [12]
            
            B. Naskręcki, Z. Dauter, and M. Jaskolski,
              ‘Symmetry aspects of the close packings of spheres’. submitted to Journal of Applied Cryst., 2023.
          [13]
            
            T. Fleckenstein and N. Hellmer, ‘When Do Two
              Distributions Yield the Same Expected Euler Characteristic Curve in the Thermodynamic Limit?’ arXiv, Jan.
              09, 2024. doi: https://doi.org/10.48550/arXiv.2401.04580.
          [14]
            
            N. Hellmer and J. Spaliński, ‘Density
              Sensitive Bifiltered Dowker Complexes via Total Weight’. arXiv, May 24, 2024. doi: https://doi.org/10.48550/arXiv.2405.15592.
          [15]
            
            A. Jokiel-Rokita, S. Piątek, R. Topolnicki, ‘Estimation of conditional inequality curves and measures via estimating the conditional quantile function’. arXiv, Apr 22, 2025. doi: https://doi.org/10.48550/arXiv.2412.20228.