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Problems indicated with multiple * are project level.

Problem 1 Generate a collection of points sampled from (a) a unit circle,
(b) a torus, (c) a Möbius band. Find appropriate parametrizations of those
manifolds and present a code to sample the desired number of points from
them. Visualize the obtained point clouds. Use the methodology of procedu-
ral programming to have one sampling procedure for all 2 and 3 dimensional
point clouds.
Problem 2 (Concentration of measure); Sample k points from [0, 1]n for n =
2, 3, 10, 20, 100, 1000, 10000, 1000000. Compute an average and the standard
deviation of the distance between those points. What are the conclusions
you may take out of it?
Problem 3 (Johnson-Lindenstrauss projection) Write down a procedure
that projects an n−dimensional point cloud into randomly selected k dimen-
sions. Define a metric distortion as in the Johnson-Lindenstrauss Lemma
and write an appropriate while loop that search for a projection that min-
imizes the distortion. Repeat the experiment for 10 different random point
clouds in dimension n for n = 1000, 10000. What is the obtained metric
distortion? How many iterations were required to find the right projection?
How is it related to the fact that Johnson-Lindenstrauss lemma speaks about
the existence of an appropriate projection with probability 1?
Problem 4 Consider the possibility o using random projections of high di-
mensional datasets for the sake of speed up the search of k nearest neighbors.
Check what are the conditions that need to be checked on the projected data,
write down an implementation and test the running times.
Problem 5 Search for Anscombe Anscombe and Datasaurus dataset. Com-
pute the summary statistics of the sets in those collections. What can you
say about them, based on those summary statistics? Then visualize the dat-
sets. What are your conclusions? Is there a way to detect instances similar
to this one when the data are sampled from much higher dimensional space?

1



Problem 6 *** Consider the possibility of applying PCA to speed up the
spatial search data structures. The proposed solution should take an ad-
vantage of the point cloud projected to a few principal components (where
efficient spacial search tools, like k-d-trees may be utilized). How the ampli-
tude of the remaining components can be used to control the error of such
a method? Does it make sense, from the point of computational complexity,
to use PCA in this context?

Problem 7 ***** A typical and very well studied textural corpora is the
collection of all documents from English (or any other language) Wikipedia.
Those articles can be downloaded, processed using term-frequency-inverse-
document-frequency technique to provide vectors in high dimensional space.
Those points can be subsequently analyzed using tools presented in this book,
in particular mapper-type algorithms. Your task is to adapt the mapper
algorithms for this datasets. Use appropriate metadata (indicating if we are
dealing e.g. with a scientific, popular, political or other article) to colour the
obtained model of the space. What are the conclusions you may get based
on this analysis?

Problem 8 Check how much the cosine similarity suffers from the concentration-
of- measure type phenomena.

Problem 9 Write a program using interval arithmetic to prove that a func-
tion f(x) = x2 − 2 have a zero in an interval [1, 2].

Problem 10 ** Implement a class of interval arithmetic (setting up appro-
priate rounding on the processor is an option). The class should implement
the four basic arithmetic operations and a few of elementary functions.

Problem 11 Write a program to find a partially constant approximation f̂

of a function f(x) = e
x2

2 on an interval [0, 10] that is not farther away that
a predefined constant ϵ from f(x).

Problem 12 Write a program which combines interval arithmetic and au-
tomatic differentiation to locate one of the minimum of the function f(x) =
sin(cos(tanh(cos(3 ∗ x)))) that is located close to x = 2.

Problem 13 Construct simplicial complexes in GUDHI’s SimplexTree via

1. triangulations from theoretical problem 16,

2. mesh files provided in class,

3. Vietoris-Rips complexes for point cloud samples,

for each of the following spaces:
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1. 2-sphere (at least three different triangulations),

2. Möbius band,

3. real projective plane,

4. torus,

5. Klein bottle.

Run the compute_persistence() method of the SimplexTrees with pa-
rameters persistence_dim_max = True and homology_coeff_field = k
for various numbers of k. Print the output of the betti_numbers method.
Compare the results.

Problem 14 Consider a rectangle [−2, 2] × [−2, 2] and build a 100 by 100
cubical complex therein. For each top dimensional cube, assign the value of a
distance function from the unit circle x2+y2 = 1 on that cube. Visualize the
obtained cubical complex. Hint: you may use Gudhi library in the process.

Problem 15 Sample a random collection of N points from a uniform distri-
bution in [0, 1]n for n ∈ {1, 2, 3, 5, 10, 15, 20}. Using Gudhi library, construct
Vietoris-Rips and Čech complexes for some values of the parameter ϵ. Com-
pare the time of creation and number of simplices. Draw a conclusions on
the ranges of N and n for which each complex should be used. Moreover,
investigate how the choice of ϵ affects the size on the complex.

Problem 16 Sample a random collection of N points from a uniform distri-
bution in [0, 1]n for n ∈ {1, 2, 3, 5, 10, 15, 20}. Using Gudhi library, construct
Alpha and Witness complexes for some values of the parameter ϵ. Com-
pare the time of creation and number of simplices. Draw a conclusions on
the ranges of N and n for which each complex should be used. Moreover,
investigate how the choice of ϵ affects the size on the complex.

Problem 17 Sample a collection of N points from n–dimensional normal
distribution for n ∈ {2, 3, 4}. Construct an Vieroris-Rips and Witness com-
plex of this collection of points. Why Vietoris-Rips construction is having
difficulties and how are the overcommed by the Witness construction?

Problem 18 In the two previous exercises, compare the persistence dia-
grams from Witness to the ones from Alpha and VR using Bottleneck and
Wasserstein distance.

Problem 19 In the setting of problem 15, compare the persistence diagrams
from Čech to those from VR using Bottleneck and Wasserstein distances.
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Problem 20 Sample 100 points with noise from a sphere, a circle, a torus
and the unit cube, respectively. Repeat 20 times for each shape. For each of
the 80 point clouds, compute persistence diagrams in dimensions 0,1,2. Com-
pare the computation time. Compute Bottleneck and Wasserstein distance
matrices. Visualize the distance matrices. Use multi-dimensional scaling on
the distance matrices and visualize the result in 2D. Train a k neighbors
classifier to distinguish the four shapes by their persistence diagrams using
the distance matrices. Compare the classification accuracy for Bottleneck vs.
Wasserstein in dimensions 0,1,2.
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