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Topological Data Analysis

▶ Persistent homology,
▶ Conventional mapper,
▶ Ball mapper,
▶ On a very intuitive level,
▶ With a number of practical examples.



The credo

Data have shape,
shape has meaning,
meaning brings value.



We all know this story



Trap of models

It is not possible to adjust an algebraic model to any possible
shape of the data – over-fitting.



Summary statistics do not suffice, always visualize!

Anscombe’s Quartet; Same statistics, different shapes



Datasaurus Dataset

Same statistics, different shapes



Shape of data may be important...
But, how to see in high dimensions?



The pipeline

 
Point cloud

Topological 
descriptor Inference



Simplicial complexes

▶ K is an abstract simplicial complex iff for every A ∈ K and
B ⊂ A, B ∈ K.

▶ Each abstract simplicial complex has its geometrical
realization built from simplices.

▶ In this case, simplices consist of points in a general position.
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Primary use: FEM

Source: Wikipedia.



What do you see?



What do you see?

▶ A circle?
▶ 19 points...?
▶ 19 points sampled from a circle?
▶ Persistent homology is a tool to make this observation bit
more precise.

▶ Filtration – multiscale model of the data.



What do you see?



What do you see?



What do you see?



What do you see?



Simplicial complexes from point clouds

▶ P = {p1, . . . , pn}, a finite point cloud with a metric d .
▶ We need a finite, combinatorial representation of the union of
balls.

▶ Rips complex at level ϵ consists of simplices supported in
p0, . . . , pn if d(pi , pj) ≤ ϵ for every i , j ∈ {0, . . . , n}.



Filtration of Rips complex

4 vertices



Filtration of Rips complex

4 vertices, 1 edge



Filtration of Rips complex

4 vertices, 3 edges, 1 triangle



Filtration of Rips complex

4 vertices, 4 edges, 1 triangle



Filtration of Rips complex

4 vertices, 5 edges, 2 triangles



Filtration of Rips complex

4 vertices, 6 edges, 4 triangles, 1 tetrahedra



Rips complex can grow large

If all points get connected by edges in the complex, we witness so
called combinatorial explosion. You will encounter it when using
Rips complexes.



Rips complexes can grow large

r

For N points,
(N
1

)
vertices,

(N
2

)
edge,

(N
3

)
triangles, ...

This is why we always limit the level (ϵ) and the maximal
dimension of simplices in the complex.



From complexes to parameter dependent homology

Simplicial 
complex

Chains 
Cycles
Boundaries

Homology groups



Homology

One connected component, one hole in dimension 1.



Persistence

1. Suppose we track homology for each radius

2. We obtain Persistent homology, an invariant that is...

3. Multiscale

4. Robust

5. Equipped with metric

6. Aplicable to variety of complexes,

7. Time series analysis,

8. Similarity measures and more...



Example; triangulation of a torus

0 3 4 0

1 8 7 1

2 5 6 2

0 3 4 0



Triangulation of a torus



Practical exercise 1

▶ Please go to
dioscuri-tda.org/Bedlewo_TDA_Tutorial_2021.html,

▶ Download exercises in Persistent homology,
▶ Open intro to homology and play with triangulation of a torus.
▶ What are the homology groups of this triangulation?

dioscuri-tda.org/Bedlewo_TDA_Tutorial_2021.html


Practical exercise 2

▶ Let us go back to our jupyter-notebooks exercises.
▶ Open persistence simple point cloud,
▶ Compute persistent homology of a point cloud sampled from
a circle (without and with a considerable amount of noise).



Apply to digital images

Left – osteoporotic, right – normal bone (vertebrae).
Not only density, but mostly structure is responsible for

osteoporotic fractures.



Persistence–based descriptors of nanoporous materials

Lee, Bathel, Dłotko, Mossavit, Smit, Hess, Quantifying similarity of pore-geometry in nanoporous materials,
Nature Communications, 15396



And more...

▶ We do not have time to cover all this ground.
▶ But, there are numerous resources for further work:

▶ https://arxiv.org/abs/1807.08607
▶ https:
//www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf

▶ https://gudhi.inria.fr/tutorials/
▶ and many more...

https://arxiv.org/abs/1807.08607
https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf
https://gudhi.inria.fr/tutorials/


Homology and persistent homology, biased collection of
resources

▶ Edelsbrunner and Harer, Computational Topology, An
Introduction, AMS.

▶ Kaczynski, Mischaikow, Mrozek, Computational Topology,
Springer 2003.

▶ Dłotko, Applied and Computational Topology, Tutorial
▶ Multiple youtube videos.

https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/kaczyn1.pdf
https://arxiv.org/pdf/1807.08607.pdf
https://www.youtube.com/watch?v=h0bnG1Wavag&t=432s&ab_channel=MatthewWright


Can we have something more visual?

=

Persistence homology of those two point clouds will be very
similar, as they both have one connected component and one hole.



To see flares?

=

But, oftentimes the information in the flares may be important (it
may for instance carry information about anomalies).



Reeb graph



Reeb graph, formally

▶ Input: M, f : M → R.
▶ We define an equivalence relation x R y iff:

▶ f (x) = f (y),
▶ x and y belong to the same connected component of f −1(x).

▶ M/R .



Conventional Mapper algorithm

Conventional mapper graph is an attempt to define Reeb graph for
discrete point cloud instead of a manifold.



Mapper algorithm, idea

▶ Input: finite collection of points sampled from M, f : M → R.
▶ We define a relation x R y iff:

▶ f (x) is close to f (y),
▶ x and y belong to the same cluster ...



Conventional Mapper algorithm



Conventional Mapper algorithm



Mapper algorithm, formally

▶ Input: finite collection of points sampled from M, f : M → R.
▶ Cover of the range of f with overlapping boxes.
▶ Fix a clustering algorithm
▶ We define a relation x R y iff:

▶ f (x) and f (y) belong to the same element I of a cover of the
range of f ,

▶ x and y belong to the same cluster in f −1(I ).

▶ Vertices of Mapper graph correspond to the clusters,
▶ An edge is placed between two vertices if the corresponding
clusters have nonempty intersection.



Mapper algorithm, coloring

▶ Vertices of the Mapper graph may be colored by an average
value of an objective function on points covered by clusters.

▶ Fix a point cloud X and an objective function f : X → R.
▶ Each vertex of the Mapper graph correspond a subset
(cluster) of points from X .

▶ Typically the value of the vertex will be an average value of f
on the corresponding cluster.



Mapper is the most well know tool of TDA

Nicolau, Levine, Carlsson, Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent

survival, PNAS 2011.



Practical exercise 1

▶ Let us play with Mapper algorithm!
▶ Go to https:
//dioscuri-tda.org/Bedlewo_TDA_Tutorial_2021.html,
download exercises in Standard Mapper.

▶ Let us start from something simple – open
standard mapper concentric circles

▶ In this exercise we will generate two concentric circles in a
plane.

▶ We will use projection to the y coordinate as a lens function,
▶ And a DBSCAN with certain parameters as a clustering
algorithm.

▶ What is the Mapper graph we obtain?

https://dioscuri-tda.org/Bedlewo_TDA_Tutorial_2021.html
https://dioscuri-tda.org/Bedlewo_TDA_Tutorial_2021.html


Practical exercise 2

▶ Let us play with something more advanced, let us consider
standard Boston property dataset.

▶ Please open standard mapper boston dataset
▶ It contains 13 variables, we want to understand its relation to
prices of properties in Boston area (in ’1970).

▶ Here we will use t-distributed stochastic neighbor embedding
as a filtering function.

▶ We will be able to experiment with numerous clustering
methods as well.

▶ Obtained mapper graphs will be colored by the average price
of a property in a given cluster.

▶ This is not the last time we see Boston Property Dataset!



Ball Mapper algorithm

▶ As a last part of our schedule, we will play with Ball Mapper
algorithm.

▶ As you might have noticed, it is not always trivial to choose
the lens function as well as clustering algorithm in standard
Mapper construction.

▶ The idea of Ball Mapper is intuitively explained in the
following slides.



Ball Mapper algorithm

Take a point cloud X



Ball Mapper algorithm

Given ϵ > 0, select subset of points N ⊂ X such that for every
x ∈ X there exist n ∈ N such that d(x , n) ≤ ϵ (we call N an ϵ-net)



Ball Mapper algorithm

Consequently X ⊂
⋃

n∈N B(n, ϵ), i.e. {B(n, ϵ), n ∈ N} cover X .



Ball Mapper algorithm

Take one dimensional nerve of that cover (an abstract graph whose
vertices correspond to B(n, ϵ), and edges to nonempty

intersections of balls)



Ball Mapper algorithm

This way we obtain a Ball Mapper graph of X with radius ϵ.
Vertices of the graph can be colored analogously to those of

standard Mapper graph.



Practical exercise 1

▶ Please open example basic circle.
▶ In this proof-of-concept example we will generate a collection
of points sampled from a unit circle x2 + y2 = 1.

▶ And built a Ball Mapper graph based on it.
▶ Do we see what we expect to see?



Practical exercise 2

▶ In our second example we will re-visit already known Boston
Property Dataset.

▶ Please open example Boston property
▶ This time we will use Ball Mapper to examine the structure of
the 13 dimensional point cloud, and the distribution of the
explanatory variable (price of properties) on the top of it.

▶ We will use tools from the Ball Mapper implementations to
recognize which coordinates makes most statistical differences
between the regions of the graph.



Some solutions

▶ Please note that the solutions to some of the questions are
available at https://dioscuri-tda.org/bedlewo_2021_
tutorial/extra.zip and download solutions to extra
exercises.

▶ Please however make an attempt to solve it by yourself before
moving to it!

https://dioscuri-tda.org/bedlewo_2021_tutorial/extra.zip
https://dioscuri-tda.org/bedlewo_2021_tutorial/extra.zip


Thank you for your time!

Dioscuri Centre in Topological Data Analysis
@Facebook

Paweł Dłotko
pdlotko @ impan.pl
pdlotko @ gmail
pawel dlotko @ skype

https://dioscuri-tda.org/
https://www.facebook.com/Dioscuri.Centre.TDA
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